Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 3 of 3 results
1.

Light-mediated control of Gene expression in mammalian cells.

BphP1/PpsR2 BphP1/Q-PAS1 CRY2/CIB1 EL222 FKF1/GI iLID Magnets PhyB/PIF3 PhyB/PIF6 TULIP VVD Review
Neurosci Res, 7 Jan 2020 DOI: 10.1016/j.neures.2019.12.018 Link to full text
Abstract: Taking advantage of the recent development of genetically-defined photo-activatable actuator molecules, cellular functions, including gene expression, can be controlled by exposure to light. Such optogenetic strategies enable precise temporal and spatial manipulation of targeted single cells or groups of cells at a level hitherto impossible. In this review, we introduce light-controllable gene expression systems exploiting blue or red/far-red wavelengths and discuss their inherent properties potentially affecting induced downstream gene expression patterns. We also discuss recent advances in optical devices that will extend the application of optical gene expression control technologies into many different areas of biology and medicine.
2.

Dynamic control of neural stem cells by bHLH factors.

VVD Review
Neurosci Res, 15 Sep 2018 DOI: 10.1016/j.neures.2018.09.005 Link to full text
Abstract: During brain development, neural stem cells change their competency to give sequential rise to neurons and glial cells. We found that expression of the basic helix-loop-helix (bHLH)-type cell-fate determination factors Ascl1, Olig2, and Hes1 is oscillatory in neural stem cells. Conversely, sustained expression of these factors mediates cell-fate determination. Optogenetic analyses suggest that oscillatory expression regulates maintenance and proliferation of neural stem cells, and that sustained expression induces cell-fate determination. Expression of the Notch ligand Delta-like1 (Dll1), which is controlled by Hes1 and Ascl1, is also oscillatory in neural stem cells. Mathematical modeling showed that if the timing of Dll1 expression is changed, Hes1 oscillations are severely dampened, resulting in impaired maintenance and proliferation of neural stem cells and causing microcephaly. Another bHLH factor, Hes5, also shows oscillatory expression in neural stem cells. Hes5 overexpression and knock-out result in abnormal Hmga1 and Hmga2 expression, which are essential for timings the switching of neural stem-cell competency. These data indicate that oscillatory expression of bHLH factors is important for normal neural stem-cell function in the developing nervous system.
3.

Functional transplant of photoactivated adenylyl cyclase (PAC) into Aplysia sensory neurons.

Immediate control of second messengers Neuronal activity control
Neurosci Res, 3 Jun 2007 DOI: 10.1016/j.neures.2007.05.015 Link to full text
Abstract: In neural mechanisms of animal learning, intracellular cAMP has been known to play an important role. In the present experiments we attempted functional transplant of a photoactivated adenylyl cyclase (PAC) isolated from Euglena into Aplysia neurons, and explored whether PAC can produce cAMP in the neurons by light stimulation. Serotonergic modulation of mechanoafferent sensory neurons in Aplysia pleural ganglia has been reported to increase intracellular cAMP level and promotes synaptic transmission to motor neurons by increasing spike width of sensory neurons. When cAMP was directly injected into the sensory neurons, spike amplitude temporarily decreased while spike width temporarily increased. This effect was not substituted by injection of 5'AMP, and maintained longer in a bath solution containing IBMX, the phosphodiesterase inhibitor. We, therefore, explored these changes as indicators of appearance of the PAC function. PAC or the PAC expression vector (pNEX-PAC) was injected into cell bodies of sensory neurons. Spike amplitude decreased in both cases and spike width increased in the PAC injection when the neurons were stimulated with light, suggesting that the transplanted PAC works well in Aplysia neurons. These results indicate that we can control cAMP production in specific neurons with light by the functional transplant of PAC.
Submit a new publication to our database